

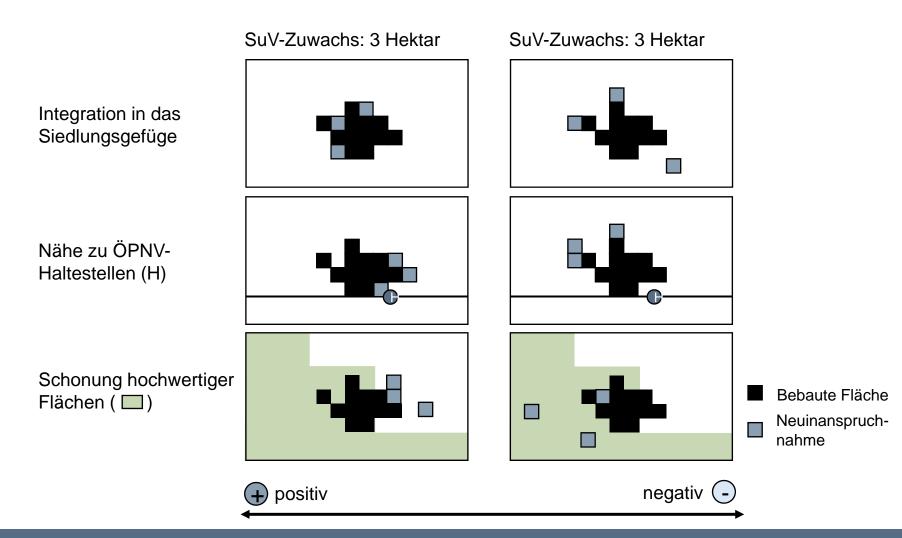
Institut für Raumordnung und Entwicklungsplanung, Universität Stuttgart

Datengrundlagen zur Siedlungsentwicklung – Gutachten im Auftrag der Landesplanungsbehörde Nordrhein-Westfalen

Prof. Dr.-Ing. Stefan Siedentop, Dipl.-Geogr. Stefan Fina Düsseldorf, 10. Dezember 2010

Aufgabenstellung

- Erarbeitung eines integrierten Indikatorensystems zur Bewertung der Flächennutzung und Flächeninanspruchnahme (Arbeitsschritt 1)
- Bewertung der Leistungsfähigkeit der Daten der Flächenerhebung nach Art der tatsächlichen Nutzung (FeTN) für die Abbildung von Flächennutzungsveränderungen (Arbeitsschritt 2)
- Abschätzung der zukünftigen analytischen Möglichkeiten der Flächenstatistik durch ALKIS und ATKIS (Arbeitsschritt 3)
- Erarbeitung von Empfehlungen für die Weiterentwicklung flächenstatistischer Monitoring- und Controlling-Methoden



Siedlungspolitischer Hintergrund

- Zunehmende Kritik an der Leistungsfähigkeit der Flächenstatistik
 - Qualitätsprobleme flächenstatistischer Daten
 - "Siedlungs- und Verkehrsfläche" als geeigneter Schlüsselindikator?
- Statistische Artefakte führen zu einer eingeschränkten Nutzbarkeit der FEtN-Daten für ein Monitoring der Siedlungsentwicklung
- Siedlungs- und Verkehrsfläche verengt die Perspektive auf eine alleinige Mengenbetrachtung ("Wieviel") ohne Beachtung von Standort- und Struktureigenschaften ("Wo", "Wie")

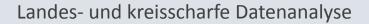
Hintergrund

Vorschlag für ein Indikatorensystem (Arbeitsschritt 1)

- Indikatoren zu Reduktionszielen
 - wieviel Fläche wurde für städtische Nutzungen neu beansprucht?
- Indikatoren zu Erhaltungs- und Schutzzielen
 - welche (Flächen-) Wertigkeiten waren betroffen?
- Indikatoren zu nutzungsstrukturellen Zielen
 - wie haben sich neue urbane Nutzungen in die Siedlungs- und Infrastruktur eingefügt?
- Indikatoren zu Effizienzzielen
 - wie effizient war die Flächeninanspruchnahme?

Vorschlag für ein Indikatorensystem (Arbeitsschritt 1)

Ziel	Indikatoren
Reduktionsziele	R1 (Veränderung) Siedlungs- und Verkehrsfläche R2 (Veränderung) Gebäude- und Freifläche (Wohnen) R3 (Veränderung) Bodenversiegelung
Erhaltungs- und Schutzziele	E1 Flächeninanspruchnahme in schutzwürdigen Bereichen (Naturschutz, Wasserschutz, Klima- und Bodenschutz) E2 (Veränderung) Erholungsfläche pro Einwohner E3 (Veränderung) Effektive Maschenweite des Freiraums
Nutzungsstrukturelle Ziele	S1 Integration neuer Siedlungsfläche in die Siedlungsstruktur S2 (Veränderung) Effektiver Freiraumanteil S3 (Veränderung der) Aufwandsgewichtete Siedlungsflächen
Effizienzziele	N1 (Veränderung) Siedlungsdichte N2 Nutzungsintensität neuer Gebäude- und Freifläche N3 Verhältnis Innen- zur Außenentwicklung N4 Recycling von Brachflächen N5 Integration neuer Siedlungsfläche in den ÖPNV-Einzugsbereich



Vorschlag für ein Indikatorensystem (Arbeitsschritt 1) - Datenanforderungen

- Die Umsetzung eines sachlich breiteren Indikatorensystems erfordert die Einbeziehung weiterer Daten
- Erforderlich ist die Nutzung von Geobasisdaten, die topographische und topologische Eigenschaften der Flächennutzung abbilden können sowie von Fachdaten der Umweltplanung
- Nutzbar sind hier vor allem das ALK (Automatisiertes Liegenschaftskataster), das ATKIS (Amtliches Topographisch-Kartographisches Informationssystem), in Zukunft das ALKIS (Amtliches Liegenschaftskataster Informationssystem)

Datengrundlagen: FeTN 1993-2008, ATKIS 1998, 2001, 2008, Luftbilder 1986-92, 1999-2003, ALK/ALKIS 2010

Statistische Analysen

- Zeitlich: Sprünge, Plausibilität
- Räumlich: Land, Kreis, Gemeinde
- Thematisch: Nutzungsarten

GIS-Analysen

- Zeitreihen ATKIS
- Abgleich FeTN ATKIS

Diskrepanzen

 - Auswahl von zehn "auffälligen Gemeinden" als Fallbeispiele

Auswertungen für die Fallbeispiele

ALK / ALKIS - Abgleich

- -Stichprobenhafte Auswertung von Katasterdaten (Solingen, Münster)
- Konsistenz Zeitreihen ALK / ALKIS

Luftbildabgleich

-Plausibilisierung der größten Landnutzungsänderungen

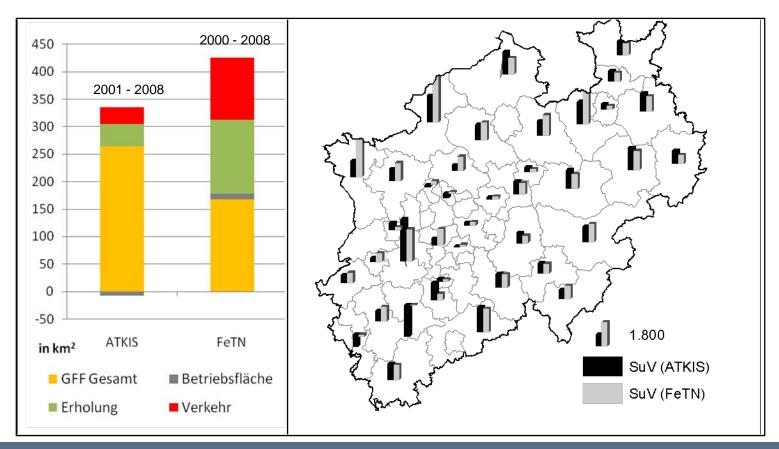
Detailanalysen

-nutzungsarten-spezifischer Datenagbleich ATKIS – FeTN

Interviews und zusammenfassende Bewertung

Interviews

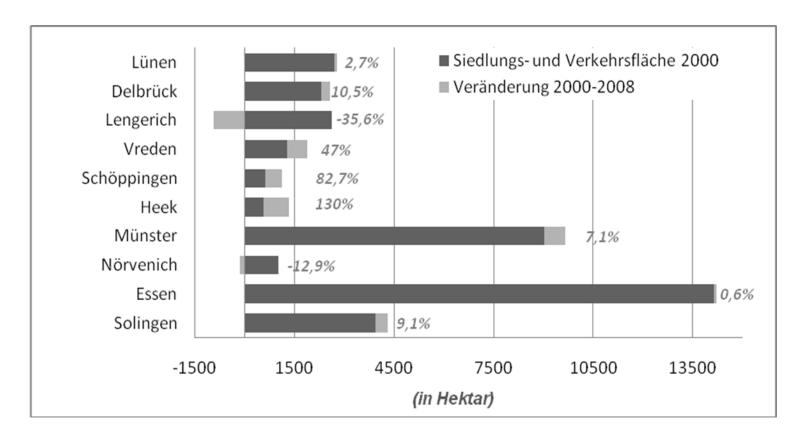
- -Katasterämter der Fallbeispielsregionen
- Landesregierung (it.nrw)



Bewertung der Datengrundlagen

- Eignungsbewertung Flächennutzungsmonitoring
- Perspektiven zukünftiger Datenstrukturen

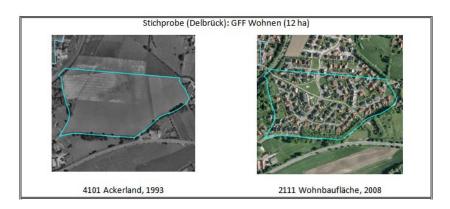
Abgleich der FeTN mit ATKIS-Daten

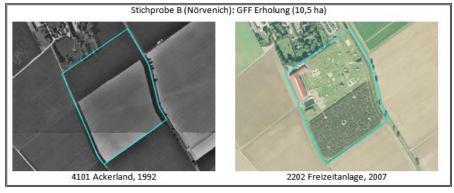


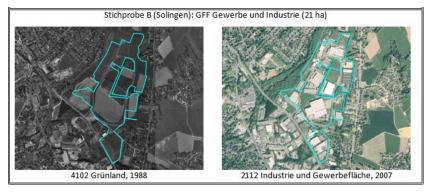
Auswahl von Fallbeispielen mit statistischen Auffälligkeiten

Name	Auffälligkeit	Räumliche Verteilung der Fallbeispiele		
Delbrück	Zeitreihensprung im Flächenverbrauch von Gebäude- und Freiflächen 2000, von Erholungsflächen 2004	Heek Lengerich		
Essen	Zeitreihensprung Erholungsfläche, hohe Nutzungsintensität	Vreden Schöp Munster Delbrück		
Heek	Höchster Flächenverbrauch, geringste Nutzungsintensität	Bissen Stillingen		
Lengerich	Geringster Flächenverbrauch			
Lünen	Starker Rückgang der Gebäude- und Freifläche trotz Wohnflächenzuwachs			
Münster	Höchster absoluter Flächenverbrauch			
Nörvenich	Geringster Flächenverbrauch, Zeitreihensprung Gebäude- und Freifläche	Narvenich		
Schöppingen	Geringste Nutzungsintensität			
Solingen	Sehr hoher Flächenverbrauch, insbesondere Erholungsfläche	Agrasia.		
Vreden	Sehr hoher Flächenverbrauch, insbesondere Gebäude- und Freifläche			

Auswahl von Fallbeispielen mit statistischen Auffälligkeiten






- Durchführung von Interviews mit Experten aus der Vermessung
- Wesentliche Ergebnisse:
 - Ex-post-Plausibilisierung der Liegenschaftskataster ist nicht möglich
 - Hauptaugenmerk ist die exakte Erfassung des Ist-Zustandes
 - Probleme der Umstellungsphasen sind bekannt und weitgehend aufgearbeitet, heute allgemein *verlässlicher* Katasterstand
 - die Liegenschaftskataster leisten eine *Nutzungs*erhebung, während ATKIS die *Bodenbedeckung* abbildet

Bei großen Flächenveränderungen Einsatz von Luftbildabgleichen

Bewertung der Datenqualität (Arbeitsschritt 2) - Zusammenfassung

- Auffällige Inkonsistenzen in den FeTN-Daten, die eine Nutzung für Controlling-Zwecke auf Gemeindeebene erheblich einschränken
- Die wesentlichen Ursachen dafür liegen in Umschlüsselungen von Nutzungsarten durch die Einführung von ALK/ALB und die Veränderung des Nutzungsartenkatalogs
- Die Qualität der FeTN im Hinblick auf die Darstellung der tatsächlichen Nutzung verbessert sich stetig; Probleme stellen sich für längsschnittanalytische Perspektiven (Monitoring)



Bewertung der Datenqualität (Arbeitsschritt 2) - Zusammenfassung

- Die tatsächliche Flächeninanspruchnahme wird durch die FeTN-Daten überschätzt, ohne dass eine nähere Quantifizierung dieses Effekts möglich wäre
- Ursachen liegen u.a. ...
 - in der Ausdifferenzierung von *Erholungsflächen* aus vormals unter Landwirtschaft geführten Nutzungsarten (Gartenland, Kleingarten) in die Nutzungsartengruppe Siedlungs- und Verkehrsfläche
 - die Verteilung zuvor "nicht weiter untergliederter" Flächennutzungen nach Flurbereinigungen

Möglichkeiten durch ALKIS/ATKIS (Arbeitsschritt 3)

Bis Mitte 90er Nutzungsarten von der Bodenschätzung der Finanzämter geprägt

> Herausgabe des Nutzungsartenverzeichnis 1990, Aktualisierung 1995

Umstellung auf Amtl.Liegenschaftsbuch (ALB) und Amtliche Liegenschaftskarte (ALK) ab Anfang 90er Andauernde Aktualisierung der tatsächlichen Nutzungen an die neuen Nutzungsartenverzeichnisse

Unterschiedliche Umsetzungsgeschwindigkeiten bei der Einführung von ALK/ALB bei den Behörden

> Sprunghafte Umbuchungen nach Beendigung von Flurbereinigungsverfahren

Neue Bundesländer: Verzögerte Ersterfassung / Integration Collido Einführung von ALKIS von 2009 bis 2013 vorgesehen

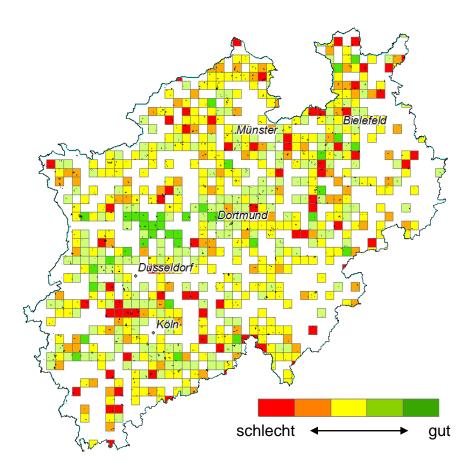
Historisierung der Liegenschaftskatasterdaten

Vereinheitlichung der Erfassungsregeln zwischen den Ländern

Reduzierung der Anzahl der Nutzungsarten (Rückmigration in die alten Verzeichnisse vorgesehen)

Möglichkeiten durch ALKIS/ATKIS sowie Umweltfachdaten (Arbeitsschritt 3)

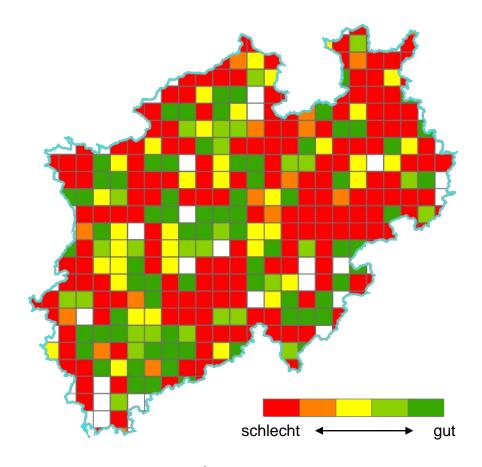
	FeTN	ALKIS	ATKIS	FIS/UIS
Zustand der Flächennutzung und Bodenbedeckung	(√)	✓	✓	(√)
Veränderung der Flächennutzung und Bodenbedeckung	(√)	(√)	×	×
Eignungs- und Empfindlich- keitsmerkmale der Bodenfläche	×	×	×	✓


✓ = gut, (✓) eingeschränkt,
× = nicht-möglich

FIS/UIS = Fach-/Umweltinformationssystem

Beispiele: Integration neuer Siedlungsflächen

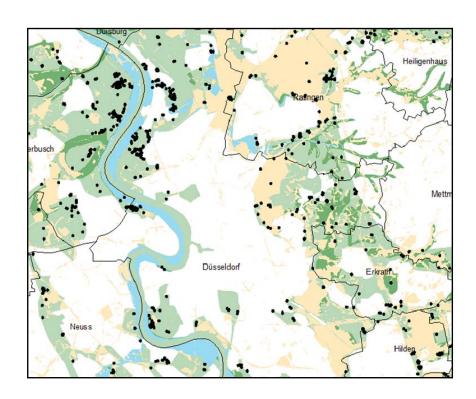
Nutzungsstrukturziele:
 Maß der Angrenzung des
 Gesamtumfangs einer neuen
 Siedlungsfläche an bereits
 existierende Siedlungsflächen



Datengrundlage: CORINE Land Cover, 1990 bis 2000, Aggregation auf 5 km-Gitternetz

Beispiele: Integration neuer Siedlungsflächen

Nutzungsstrukturziele:
 Maß der Lokalisierung neuer
 Siedlungsflächen im
 fußläufigen Einzugsbereich
 von schienengebunden ÖV Haltestellen ("Bauen an der
 Schiene")



Datengrundlage: ATKIS, 1990 bis 2000, Aggregation auf 10 km-Gitternetz

Beispiele: Bauen im landschaftlichen Außenbereich

Schutz- und Erhaltungsziele:
 Bautätigkeit (Errichtung neuer
 Gebäude) in Regionalen
 Grünzügen

Datengrundlagen: Regionale Grünzüge Düsseldorf, SEMANTA Gebäudeauswertung 1984-2005

Empfehlungen – welche Daten werden benötigt?

- Einführung eines Indikatorensystems für ein systematisches
 Monitoring und Controlling der Siedlungsentwicklung
- Die Realisierung dieses Systems benötigt keine neuen Daten,
 sondern erfordert den effektiverer Einsatz der vorhandenen Daten
- Verstärkter Einsatz von Geobasisdaten für die Zwecke von Raumund Umweltbeobachtung ist erforderlich
- Kopplung (Schnittstellen) Geobasisdaten und Umweltfachdaten

Ausblick auf Weiterentwicklungserfordernisse

- Raumbeobachtungssystem ist wachstumsorientiert
 - vergleichsweise gute Abbildbarkeit des Siedlungsflächen wachstums
 - Grenzen bei Erfassung von Zuständen in den Beständen
- Weiterentwicklungsbedarf bei Indikatoren ...
 - Innenentwicklungsreserven (Baulücken, Brachflächen)
 - Innen-/Außenentwicklung
 - Wohnungsleerstand
 - Nutzungsmischung

Vielen Dank für Ihre Aufmerksamkeit!